Artificial
Intelligence

ELSEVIER Artificial Intelligence 101 (1998) 35-62

Using modeling knowledge
to guide design space search

Andrew Gelsey *, Mark Schwabacher!, Don Smith 2
Computer Science Department, Rutgers University, New Brunswick, NJ 08903, USA

Received 26 March 1997; received in revised form 5 January 1998

Abstract

Automated search of a space of candidate designs is an attractive way to improve the traditional
engineering design process. To make this approach work, however, an automated design system
must include both knowledge of the modeling limitations of the method used to evaluate candidate
designs and an effective way to use this knowledge to influence the search process. We argue that
a productive approach is to include this knowledge by implementing a set of model constraint
functions which measure how much each modeling assumption is violated. The search is then
guided by using the values of these mode!l constraint functions as constraint inputs to a standard
constrained nonlinear optimization numerical method. A key result of our work is a successful
demonstration of the application of Al techniques to an important engineering problem. In an
empirical study of parametric conceptual aircraft design, we observed a cost improvement of
two orders of magnitude. The principal contribution of our work is a new design optimization
methodology which makes explicit the interaction between models of artifacts, and validity models
of artifact models. (©) 1998 Elsevier Science B.V. All rights reserved.

Keywords: Design; Engineering; Model; Optimization; Physics; Search; Aircraft; Constraint; Numerical

1. Introduction

Automated search is not commonly used in real-world design tasks, in spite of the
widely held belief that search automation should improve the traditional engineering
process by producing better designs in less time. We explain why automated design

* Corresponding author. Email: gelsey@cs.rutgers.edu.
! Email: schwabac@cs.rutgers.edu.
2 Email: dsmith@cs.rutgers.edu.

0004-3702/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PIl: S0004-3702(98)00012-5

36 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

is not used (simulators do not know their limits), and show how this problem can
be overcome using model constraints that model the limitations of the simulators. The
principal contribution of our work is a new design optimization methodology which
makes explicit the interaction between models of artifacts, and validity models of artifact
models. We show an application of Al techniques to an important engineering problem,
presenting an effective compromise between, on the one hand, using the results of a
simulator as given, or, on the other hand, completely re-engineering it declaratively.
Re-engineering has been successful in previous research (e.g. [9], see Section 7) but
may be prohibitively expensive.

A key contribution of our work is a successful demonstration of the application of
Al techniques to an important engineering problem. In an empirical study of parametric
conceptual aircraft design, we observed a cost improvement of two orders of magnitude.
The details of this study appear later in this paper, as well as some evidence that such
improvements may transfer to other domains.

If the design process is automated, each step of the automated search requires evalu-
ating the quality of candidate designs, and for complex artifacts (e.g., aircraft, our main
example), this evaluation must be done by computational simulation. However, compu-
tational simulation is based on a model of the physics of the artifact, and this model
will generally make simplifying assumptions in order to be computationally tractable.
Most existing computational simulators are intended to be used by human experts, and
thus they typically include no explicit representation of their modeling assumptions.
Instead, it is assumed that the experts will use their domain knowledge to stay away
from portions of the design space that will violate the simulator’s assumptions.

For example, a typical assumption for an aircraft simulator might be that the wings
will not stall. Stall is a physical phenomenon that occurs when a wing is operated at
too high an angle of attack and therefore ceases to generate lift. The physics of stall is
understood, and there is in principle no reason not to model it in a simulator. However, a
human expert aircraft designer does not want to design a plane that stalls during normal
operation, so he does not need a detailed prediction of stall behavior. In our interactions
with aircraft industry expert design engineers, we have found that human experts may
in fact be quite satisfied with an incomplete lift model. Their domain knowledge gives
them the ability to recognize “impossibly high” lift coefficients and thus realize that the
candidate design would actually stall and should be discarded.

However, the simulator may be invoked by another program such as an automated
search procedure rather than by a human expert. In this case it is quite likely that
in exploring the design space, the automated search procedure will examine designs
which violate the simulator’s assumptions. For those candidate designs, the evaluation
of the design quality computed by the simulator may be meaningless. Furthermore, this
meaningless value may appear better than the value for any physically realizable design,
thus leading the search procedure to a worthless but apparently very good design. This
problem is one reason that automated search is not commonly used in “real-world”
engineering design.

In our earlier work [16], we have investigated the types of modeling knowledge that
are needed so that a simulator can be reliably invoked by another program. We have
also described algorithms for detecting assumption violations and other problems that

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 37

might lead to incorrect or unreliable simulation results. In the present article, we address
the question of how information about model assumption violations can be effectively
communicated to an automated search procedure. This communication allows the search
procedure to focus its search for good designs within the subset of the design space
which contains candidate designs that do not violate model assumptions.

2. Communication strategies

As mentioned above, the focus of this research is the effective communication of
information about model assumption violation between a simulator and an automated
search procedure which is exploring a space of candidate designs. In our experimental
work we have used a gradient-based constrained optimization algorithm as our search
procedure. (This search procedure is further described in Section 4.) However, before
discussing the details of this particular search method, we would like to present the
following more general list of strategies. These strategies can be used for communication
of information about model assumption violation between a simulator and an automated
search procedure which is exploring a space of candidate designs:

The Null Strategy: ignore the model violation—the search procedure uses whatever value
happens to be computed by the inapplicable model for the quality of the candidate
design.

The Boolean Strategy: when any model violation occurs, always give the search proce-
dure a standard “very bad value” as the quality of the candidate design.

Model Constraints: when a candidate design is evaluated, give the search procedure not
only a value for the quality of the candidate design, but also values for a set of “model
constraint” functions which measure how much the various modeling assumptions are
satisfied or violated.

Model Penalties: same as the model constraints strategy, except that only the value for
the quality of the candidate design is returned to the search procedure, and that value
is penalized in proportion to the amount by which the various modeling assumptions
are violated.

In this article we will focus primarily on the boolean strategy and model constraints.
The null strategy is unlikely to be useful unless it coincidentally happens to be the same
as either the boolean strategy or the model penalties strategy. The boolean strategy can
be useful — its advantages include:

e casy to implement: as soon as a violation is detected, Just return immediately with

a standard “very bad” value for the objective function,

e it can be used even with unconstrained search methods.

The model constraints strategy is more complicated to implement than the boolean
strategy, but our experimental results later in this article show that when used with a
search method that allows constraints, the performance of the model constraints strategy
is considerably better than that of the boolean strategy. We do not investigate the model
penalties strategy in this article, but discuss possible uses for it in Section 8.

38

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

—_ 221

1 160

engineScale = 1.532

wingArea = 4652

aspectRatio = 1.57

fuselageTaperLength = 121.3

wingThicknessRatio = 3

ws_div_dma = 1.158

taperRatio = 0

drawingScale = 2.09 \/ 1. 80
L0

¥ T |
-42 0 42
a\
OOIO0

Fig. 1. Supersonic transport aircraft designed by our system (dimensions in feet).

Phase Mach Altitude (ft.) Duration (min.s) Comment

1 0.227 0 5 “takeoff™

2 0.85 40,000 85 subsonic cruise (over land)

3 2.0 60,000 180 supersonic cruise (over ocean)

capacity: 70 passengers

Fig. 2. Mission specification for aircraft in Fig. 1.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 39

3. Aircraft design

We have pursued our investigation in the domain of conceptual design of supersonic
transport aircraft. However, in our design task the key design variables have already
been identified (in collaboration with an aircraft industry design expert) so a more
precise characterization of our problem might be “parametric design at a system level
of abstraction”.

Fig. 1 shows a diagram of an airplane designed to fly the mission shown in Fig. 2. This
mission is for a supersonic passenger transport, so a key requirement is the passenger
capacity (70 persons in this case). The mission has three key phases: a short, low-speed,
ground level phase to test takeoff capability, a subsonic cruise phase representing travel
over land where supersonic flight is prohibited, and finally a supersonic cruise phase
corresponding to an ocean crossing.

For conceptual design, we represent an aircraft just by a set of values for major aircraft
design variables such as wing area, aspect ratio, engine size, etc. The experiments in
this article use eight such design variables, which are listed later in Section 6. In our
current implementation, the design goal is to minimize the takeoff mass of the aircraft, a
measure of merit commonly used in the aircraft industry at the conceptual design stage.
Takeoff mass is the sum of fuel mass, which provides a rough approximation of the
operating cost of the aircraft, and “dry” mass, which provides a rough approximation
of the cost of building the aircraft. Takeoff mass of a particular aircraft design for a
particular mission is computed as follows:

1. Compute “dry” mass using historical data to estimate the weight of the aircraft as
a function of the design variables and passenger capacity required for the mission.
2. Compute the landing mass m(tsna) which is the sum of the fuel reserve plus the
“dry” mass.
3. Compute the takeoff mass by numerically solving the ordinary differential equation
dm

7"?=f(m’t)

which indicates that the rate at which the mass of the aircraft changes is equal
to the rate of fuel consumption, which in turn is a function of the current mass
of the aircraft and the current time in the mission. At each time step, the simula-
tor’s aecrodynamic model is used to compute the current drag, and the simulator’s
propulsion model is used to compute the fuel consumption required to generate
the thrust which will compensate for the current drag.

A complete mission simulation requires about 1/4 second of CPU time on a DEC Alpha
250 4/266 desktop workstation.
4. Design Associate

Fig. 3 shows a block diagram of our automated conceptual design system. The design
system has two major components: the Design Associate (DA), which searches the

40 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

Design Associate Model/Simulation Associate

i Multidiscipli
Search Random Starting Design Constraint plnary

. Aircraft Simulat
Manager Point Generator 7| Evaluation ator
,L ‘{/ {Mission Analysis]

Model Constraint

Evaluation
N

Objective Function

Evaluation

Fig. 3. Automated design system block diagram.

Constrained Nonlinear

Numerical Optimizer

Gradient Computation [l<

space of candidate designs, and the Model/Simulation Associate (MSA), which the
DA uses to evaluate the quality of candidate designs. Unlike the discrete search spaces
more commonly studied by Al researchers, the search space for the aircraft conceptual
design problem involves design variables such as wing area or aspect ratio which
can be varied continuously throughout an interval of possible values. To search this
space, the DA uses a constrained nonlinear numerical optimizer, which varies the set
of continuous design variables to minimize® a nonlinear objective function subject
to a set of nonlinear equality and inequality constraints. As mentioned previously, the
nonlinear objective function to be minimized is the takeoff mass required for a particular
candidate aircraft design to fly a particular mission. The constraints are computed within
the Model/Simulation Associate and are described in Section 5.

The data flow in Fig. 3 is as follows:

e The search manager (in conjunction with the random starting point generator)
passes to the constrained nonlinear optimizer a design represented as a vector of
real numbers, the values of the design variables. The optimizer uses this initial
design as a starting point and later passes back an improved design using the same
representation.

e The constrained nonlinear optimizer (directly or via the gradient computation mod-
ule) passes to the evaluation modules a design, again represented as a vector of
values of the design variables. The design constraint evaluation module passes back
a vector of real numbers representing the values of the design constraints. The
model constraint module does the same for model constraints, and the objective
function evaluation module passes back a scalar value for design quality, which
however is only meaningful if all the constraints are satisfied.

o The evaluation modules pass on to the simulator the design passed to them, and
the simulator passes back a complete set of simulation results from which each
evaluation module then extracts the data it needs.

3 To instead maximize the objective function, just multiply it by —! and minimize.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 41

The numerical optimizer used in this article is CFSQP* [23], a state-of-the-art im-
plementation of the Sequential Quadratic Programming method.® Sequential Quadratic
Programming is a quasi-Newton method that solves a nonlinear constrained optimization
problem by fitting a sequence of quadratic programs® to it, and then solving each of
these problems using a quadratic programming method [20,43].

CFSQP begins its search of the design space at a particular point (i.c., a particular
candidate design), and typically a set of searches from several starting points will not
all terminate at or near a single global optimum. Therefore, the DA includes a random
starting point generator so that CFSQP can be started from several different candidate
designs, improving the likelihood of finding an excellent design.

In order to handle unevaluable points (i.e., points each of whose objective function
was assigned the boolean strategy standard “very bad” value), the DA includes methods
for “intelligent” gradient computation. The gradients used by CFSQP are computed by
using a set of rules that specify how to compute gradients with reasonable accuracy in
the presence of unevaluable points. For example, if the DA evaluates three candidate
designs in order to compute a component of the gradient using a central difference
formula, and if one of the points is unevaluable, then the DA ignores the unevaluable
point and uses the other two points in a forward difference formula. The DA’s rules for
gradient computation are described in detail in [35]. In addition, we have arranged for
the line searches in CFSQP to terminate when they encounter unevaluable points. These
enhancements to CFSQP are crucial when using the boolean communication strategy,
which results in numerous unevaluable points. They can also be helpful when using the
model constraints communication strategy, since some limitations of the simulator are
not modeled in the model constraints, so some unevaluable points exist even when using
model constraints. In the experiments reported in this article, with the boolean strategy,
76% of the points encountered were unevaluable, and with the model constraints strategy,
4% of the points encountered were unevaluable.’

5. Model/Simulation Associate

Our automated design system (Fig. 3) has two major components: the Design As-
sociate (DA), described above, and the Model/Simulation Associate (MSA), which
the DA uses to evaluate the quality of candidate designs. The MSA includes a mul-
tidisciplinary® simulator which it uses to evaluate candidate designs, and the MSA is
responsible for communicating to the DA information about the quality of a candidate

4 CFSQP stands for “C code for Feasible Sequential Quadratic Programming”.

3 Earlier we tried doing optimization in this domain using several different optimization packages, and found
that we obtained the best results when using CFSQP.

6 A quadratic program consists of a quadratic objective function to be optimized, and a set of linear
constraints.

7The optimizer tends to avoid unevaluable points, so these percentages are considerably lower than the
average density of unevaluable points in the search spaces, as indicated by the data presented later in this
article.

8 We call the simulator multidisciplinary because it contains code to evaluate the aircraft using several
engineering disciplines, including weights, aerodynamics, and propulsion.

42 A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

design, how well other design constraints are satisfied, and how well the simulator’s
modeling assumptions are satisfied. Our current version of the MSA implements two of
the communication strategies described in Section 2: the boolean strategy and the model
constraints strategy. When the MSA runs the multidisciplinary aircraft simulator to eval-
uate a candidate design, it computes values for both the objective function and a set
of design constraint functions and model constraint functions. To implement the model
constraints communication strategy, the MSA just returns values for all these functions
to the DA. To implement the boolean communication strategy, the MSA returns only a
value for the objective function, which is computed as follows:

e if one or more constraints are violated, the MSA sends a standard “very bad” value
to the DA as the value of the objective function;

e otherwise, the MSA sends to the DA the value of the objective function computed
by the simulator, which will be the takeoff mass the candidate design requires to
complete the mission.

For the experiments in this article, the MSA computes the following model constraint

functions, which are < 0 if a constraint is satisfied and positive otherwise:

MaxThrottle = (maximum throttle required during mission simulation) — {maximum
throttle setting allowed for engine). If an impossibly high throttle is required to fly the
mission, the simulation will continue using extrapolation, but the value of MaxThrottle
will indicate the extent to which the engine model assumptions are violated.

MinThrottle = (minimum throttle setting allowed for engine) — (minimum throttle re-
quired during mission simulation).

DragTableL1, DragTableU1, DragTableL2, DragTableU2: Similar to above—violation of
bounds for a two-dimensional table of experimental data on supersonic drag.

LOAD = (maximum wing loading during mission simulation) — (maximum wing loading
simulator can validly model}.

FUEL = (fuel mass that current candidate design requires to complete mission) — (fuel
mass that can be stored in available volume for current candidate design).

STALL = {maximum lift coefficient during mission simulation) — (maximum lift coef-
ficient simulator can validly model). The simulator assumes wings will not stall, and
this constraint function computes how well that assumption is satisfied.

These model constraint functions are continuous and usually smooth with respect to
the design variables as their values change sign. This smoothness is very important so
that when MSA is using the model constraint communication strategy, CFSQP (the
numerical optimizer) can follow constraint boundaries if necessary as it searches for an
aircraft design which can fly the given mission with minimal takeoff mass.

We believe that if, for a given model constraint, a design space can be partitioned
into a small number of regions in which the constraint holds or does not hold, then it
will usually be possible to formulate a model constraint which will smoothly approach
zero as the boundaries of the “good” regions are approached. If, however, throughout
the design space a model constraint oscillates with high frequency between satisfaction
and violation, then it probably will not be smooth. In this case the model will almost
certainly need to be revised in order to be useful for design.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 43

In addition to these model constraints, MSA computes the following design con-
straint:

PASS = (passenger capacity required for the mission) — (passenger capacity available
with current design variables).

To clarify the distinction between model constraints and design constraints, we note

the following differences:

e Design constraints can be extracted directly from design goals, while formulating
model constraints requires carefully examining the underlying assumptions of the
model on which the simulator is based.

o Design constraints can be violated without reducing the correctness of the objective
function computed by the simulator, but when a model constraint is violated, the
value of the objective function computed by the simulator cannot be trusted. For
example, even if the PASS constraint is violated, the simulator can still correctly
compute the takeoff mass needed to fly though the mission carrying whatever
number of passengers the aircraft is actually able to hold. However, if a model
constraint is violated, then the takeoff mass computed by the simulator may be
wildly wrong. For example, if the simulator is allowed to violate the STALL
constraint, the optimizer may design an aircraft with very small wings operated at
a very high angle of attack. This design may appear to be a very efficient aircraft,
much better than the best physically plausible design, but in fact is not capable of
flying at all.

e If a design constraint happens to be inactive at the optimal design (i.e., the con-
straint is satisfied for all designs near the optimal design, so the optimum does
not lie on a constraint boundary), then the “null” communication strategy will be
effective when applied to this constraint—i.e., the constraint may safely be ignored
without a detrimental effect on the optimization. However, the null communication
strategy will not in general be effective when applied to model constraints, even
if they are inactive at the optimal design. In the region where a model constraint
is violated, the value of the objective function computed by the simulator may
include random meaningless values. If the model constraint violations are ignored
by the null strategy, the region where the model constraint is violated may include
apparent local optima of the objective function. Even worse, there may be points
having (spurious) values of the objective function better than the best value for any
design satisfying all the model assumptions. Either of these conditions can “trap”
the optimizer and keep if from getting to the true optimum, even though the model
constraint in question is inactive at the true optimum.

6. Experimental results
To experimentally test MSA communication strategies, we used a design space in

which the optimizer varied the following aircraft conceptual design variables over a
continuous range of values:

44 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

(1) engine size,

(2) wing area,

(3) wing aspect ratio,

(4) fuselage taper length (how “pointed” the fuselage is),

(5) effective structural thickness over chord (a nondimensionalized measure of wing
thickness),

(6) wing sweep over design mach angle (a nondimensionalized measure of wing
sweep),

(7) wing taper ratio (wing tip chord divided by wing root chord),

(8) fuel annulus width (space available in fuselage for fuel storage),

This set of design variables was chosen in collaboration with an aircraft industry design
expert.® However, in these experiments we omitted discrete parameters such as number
of engines which did not fit well with our continuous nonlinear programming search
method. Since there are only a small number of choices, in practice our continuous
design methodology could simply be repeated several times using different numbers of
engines, and the best of these four or five designs could be chosen. A more general
approach would be the use of mixed integer/continuous programming techniques as a
search procedure, but that would require significant additional research.

Fig. 4 shows the two subsets we explored in the design space defined by these design
variables. Each is an eight-dimensional “box” which is the product of the intervals of
values allowed for the eight design variables. The volume of the “big box” is about 300
times larger than the volume of the “small box”.'°

To test the effect of the MSA communication strategy on the design process, we
considered the following strategy combinations:

(1) Return values of all model constraint functions to the optimizer as nonlinear

inequality constraints.

(2) Return values of all model constraint functions except MinThrottle and Max-
Throttle to the optimizer, but for candidate designs where the engine table con-
straints were violated (MinThrottle or MaxThrottle positive), use the “boolean”
strategy and return a standard “very large” value for takeoff mass.

(3) Return values of all model constraint functions except DragTableL1, Drag-
TableU1, DragTableL2, and DragTableU2 to the optimizer; use “boolean” strategy
for points which required extrapolation outside the aerodynamics table bounds.

9 Dr. Gene Bouchard of Lockheed.
10 This nondimensional volume ratio is the product of the ratios of the ranges of the design variables,

300 ~ H %
:

i€design variables

where b; is the range of design variable i in the larger box and s; is the range of design variable i in the
smaller box. Since for a given i, #; and s; have the same units, their ratio is nondimensional and thus the
product of all these ratios is itself also nondimensional. This nondimensional volume ratio will be preserved
by linear transformations of the design variables, for example by changes in units of measurement, though the
volume ratio could be changed by a problem reformulation which transformed the set of design variables in
a nonlinear fashion.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 45

Design variable Small box Big box

low high low high
engine size 0.5 3 0.1 5
wing area (sq. ft.) 1500 13500 500 20000
wing aspect ratio 1 2 0.5 3
fuselage taper length (ft.) 100 200 50 300
effective structural thickness over chord 1 5 0.5 10
wing sweep over design mach angle 1 1.45 0 1.45
wing taper ratio 0 0.1 0 0.1
fuel annulus width (ft.) 0 4 0 8

Fig. 4. Subsets of design space explored.

(4) Return values of all model constraint functions except FUEL, which is “boolean”.

(5) Return values of all model constraint functions except STALL, which is “bool-

ean”.

(6) Return values of all model constraint functions except LOAD, which is “boolean”.

(7) Use the “boolean” communication strategy for all model constraint functions.

(8) A two-level approach in which the “boolean” communication strategy is used to

find a feasible point (i.e., a design for which all constraints are satisfied), and
then all mode! constraints are used to find an optimum.
We chose these combinations so we could test the impact of each type of model
constraint by comparing results with all model constraints to results with a given type
left out.

For each strategy combination, our system randomly chose points in the “small box”
until it found 74 “evaluable” points (i.e., points whose objective function was not
assigned the boolean strategy standard “very bad” value).!! Each of these 74 points
was then used as a starting point for a design optimization using CFSQP to try to find an
optimal aircraft design for the mission shown in Fig. 2. (We required the starting points
to be evaluable because if CFSQP happened to be started in an unevaluable region, then
all components of the gradient would be zero and the optimization would terminate
immediately.) The best design found for this mission in all the experiments is shown in
Fig. 5, and a diagram of this aircraft appears in Fig. 1.

The performance of the strategy combinations is shown in a table in Fig. 6. The
“Success” column for each strategy combination shows what fraction of the 74 opti-
mizations found aircraft designs having takeoff masses within 1% of the takeoff mass
of the apparent “global optimum”—the best design we found for this mission (Fig. 5).
The “Start Cost” column shows how many simulations had to be run on unevaluable
points while finding the 74 optimization starting points, and “Opt. cost” shows the total
number of simulations that were run during each set of 74 optimizations. 12 The “Est.

1174 is not a “magic” number; it was just a convenient choice given available disk space.
12 As mentioned earlier, a complete mission simulation requires about 1/4 second of CPU time on a DEC
Alpha 250 4/266 workstation.

46

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

Design variables:

engine size

wing area

wing aspect ratio

fuselage taper length

effective structural thickness over chord
wing sweep over design mach angle
wing taper ratio

fuel annulus width

Objective function:
Takeoff Mass

Model constraints:

1.532
4652 sq. ft.
1.570
121.3 ft.
3.002
1.158

0

0

167.4 tonnes

MaxThrottle —41.57

MinThrottle -0.76

DragTableL 1 —-2.2

DragTableU1 -1.8

DragTableL2 —1.5

DragTableU2 —85

LOAD —149.8

FUEL —0.0011 tonnes

STALL 0

Design constraint:

PASS -2

Fig. 5. Best design found for mission of Fig. 2.

Strategy combination Success Start cost Opt. cost Est. 99% cost
All model constraints returned 65/74 16 42375 1252
Min/MaxThrottle “boolean” 52/74 3203 67158 3609
FUEL “boolean” 0/74 603 99215 > 456565
STALL “boolean” 18/74 5441 81566 19427
DragTable* “boolean” 67/74 57 47042 1242
LOAD “boolean” 62/74 721 39404 1372
All model constraints “boolean” 0/74 21946 75804 > 447106
Two level 72/74 18098 39389 990

Fig. 6. Performance of the various strategy combinations.

99% cost” column in Fig. 6 gives the estimated cost with each strategy combination to
have a 99% chance of finding the global optimum. This cost is computed by multiply-
ing the average cost per optimization times 10g(1 — Pyesired) / 10g(1 — Psyccess), Where
Pyesired 18 the desired probability of finding the global optimum (99% in this case) and
Pyyccess 18 the probability of any single optimization finding the global optimum (which

A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62 47

1e+06 T T T T T T T T T

i All model constraints retumed —o—
Two level -+--

Throttle constraints “boolean” -&--
STALL “boolean” -

Drag Table constraints “boolean” -a--
LOAD “boolean” -%--

100000

%--x--x

Ty

Cost
X

T
*

10000 | P E
b xx,(xx

.
I P Cgapa0E0C0O0ERRERERAREERE0000a0

' a8 E}Bﬂﬁ'ﬂ*ig-_g.ﬁt? geeanay

1000 F sk b bbb e E bbb b A A A e A A
E %X
1 1 1 1 1 1 1 1 L

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05
Quality

Fig. 7. Cost to achieve a range of design qualities with 99% confidence. Quality is takeoff mass, normalized
by the best takeoff mass found (Fig. 5), so quality = 1.01 corresponds to Fig. 6. The ‘FUEL “boolean™ and
‘All model constraints “boolean™ strategy combinations do not appear as they did not find designs within 5%
of the best takeoff mass found.

we estimate with the value in the “Success” column).!3 As the table indicates, for the
cases whose success was 0/74, the only information we can compute about the “Est.
99% cost” is that it will be greater than the cost we would have computed if the success
rate had been 1/74. Fig. 7 shows graphically the “Est. 99% cost” to achieve a range of
different design qualities.

13 Derivation of formula: (1 — Pgyccess) is the probability that a single optimization will nor find the global
optimum, 50 (1 — Psyccess)™ is the probability that none of n optimizations will find the global optimum, and
thus (1 — (1 — Pyyccess)™) is the probability that at least one of n optimizations will find the global optimum.
To find the cost of Pyesired, @ given desired probability of finding the global optimum, solve

Piesired = 1 — (1 — Psuccess)n
for n, which gives
n=10g(1 — Pesired) / 10g(1 — Pruccess)

and finally multiply n by the average cost per optimization. We note that the computed value of n is not
necessarily an integer, so a more precise calculation would round » up to the nearest integer.

48 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

The data in Fig. 6 indicates that the model constraints communication strategy can
find the global optimum with a 99% confidence at a cost which is one or more or-
ders of magnitude smaller than the cost to achieve comparable results with the boolean
communication strategy. Examination of the different strategy combinations indicates
that the model constraints which contribute most to this performance difference are
the constraints active at the global optimum (constraint values =~ 0 in Fig. 5). How-
ever, even the constraints which are inactive at the global optimum may give a fac-
tor of two to three speedup when handled using model constraints rather than the
boolean strategy. If a constraint is active at the global optimum, then CFSQP must
“navigate” along the constraint boundary when searching for the optimum. This navi-
gation is easy when the boundary is defined by a smooth model constraint, but much
more difficult when the boundary is marked only by a sudden jump in the objec-
tive function from a reasonable value to the boolean “very bad” value. Model con-
straints which are inactive at the optimum may still be active during some parts of
the search and thus can help guide the search and prevent the optimizer from getting
stuck.

Model constraints which are active at the global optimum are more critical, but it is
important to note that there will typically be no reliable a priori way to determine which
model constraints will be active at the global optimum. This fact suggests that the model
constraints communication strategy should be used to handle all model assumptions, even
though implementing smooth model constraint functions may require more work than
implementing the simpler boolean communication strategy.

An issue to consider is why any model constraints are active for the globally optimal
design. Does this situation indicate that there are actually better designs on the other
side of the constraint boundary which the optimizer would be able to find if only we
had a more sophisticated model that did not need as many constraints? Not necessarily.
For example, lift initially rises as a function of angle of attack and later begins falling
rapidly as stall occurs for higher angles of attack. The STALL constraint, which is active
at our global optimum (see Fig. 5) cuts off this function at its peak so that the lift
function is monotonic where the constraint is satisfied. A more sophisticated simulator
which modeled stall would not find better designs on the other side of the STALL
constraint boundary—it would just find that the lift function ceased to be monotonic
when the boundary was crossed. The MinThrottle constraint is also active at our global
optimum (see Fig. 5). In this case, the engine stops running when the throttle is too
low. Modifying the engine model to correctly predict the sudden low temperatures
and pressure produced by the engine when it stops running would not uncover better
designs.

To test the effect of box size on our conclusions, we repeated our experiments in a
larger box. Fig. 4 shows the two “boxes” in the design space used in our experiments.
The bigger box contains the smaller box, and the volume of the larger box is about 300
times greater than the volume of the smaller box, as explained in an earlier footnote.
Fig. 8 shows the performance of the various communication strategies in the larger box,
and Fig. 9 shows graphically the “Est. 99% cost” to achieve a range of different design
qualities. Search cost increases in the larger box, as expected, but model constraints still
cost orders of magnitude less than the boolean strategy.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 49

Strategy combination Success Start cost Opt. cost Est. 99% cost
All model constraints returned 55/74 48 58376 2674
Min/MaxThrottle “boolean” 14/74 6979 124796 39102
FUEL “boolean” 0/74 879 128618 > 592317
STALL “boolean” 15/74 21669 78508 27520
DragTable* “boolean” 40/74 280 176113 14114
LOAD “boolean” 60/74 2181 58976 2285
All model constraints “boolean” 0/74 354761 80835 > 1992408
Two level 54/74 301917 56198 17034

Fig. 8. Performance of the various strategy combinations in a bigger box.

1e+06 T T T T T T T T —]
[All model constraints returned —o—
[Two level -+-
[Throttle constraints “boolean” -B--
STALL “boolean” --- 1
3 Drag Table constraints “boolean” -&---
X LOAD “boolean™ -%--
100000 |} ¢ .
[X, b
b X,
r MR R K
[hEoEPEPE0EPECECEEEGEREREARNEEEREDEREEEE0E080B080BEREY
S 3 Eﬁ‘—b >< Xx
S hapru il
“"Lbﬁ-k-a-i':&?t:§§§tt~t-t A A EE AR E X R LR TR AR LAt de e b vt b
X,
10000 L 3
an STy
[% XK AR 0.5
o oo~ o -
| ke TR 2R X222 R TR R REA P DR EERE ARG RPN AP RANP
1000 - -
L FE 1 L 1 1 L 1 1 1
1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05
Quality

Fig. 9. Cost to achieve a range of design qualities with 99% confidence in a bigger box. Quality is takeoff
mass, normalized by the best takeoff mass found (Fig. 5), so quality = 1.01 corresponds to Fig. 8.

It is important to compare the performance of the “two-level” strategy combination
for the two boxes. In the “small” box, the two-level approach was actually superior to
the pure model constraints approach: it was slightly better to use a boolean strategy
to find a feasible point before starting to use model constraints to find the optimum.
The reverse was true in the big box, however: the pure model constraints approach
was a factor of six less expensive then the two-level approach. These results are quite
plausible, because the “start cost” data for “all boolean” combination indicates that the

50 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

Phase Mach Altitude (ft.) Duration (min.s) Comment
| 0.227 0 S “takeoff”
2 0.85 40,000 50 subsonic cruise (over land)
3 2.0 60,000 225 supersonic cruise (over ocean)

capacity: 70 passengers

Fig. 10. Another mission specification.

Design variables:

engine size 1.146
wing area 3690 sq. ft.
wing aspect ratio 1.089
fuselage taper length 130.1 ft.
effective structural thickness over chord 2.728
wing sweep over design mach angle 1.235

wing taper ratio 0

fuel annulus width 0

Objective function:

Takeoff Mass 134.8 tonnes
Model constraints:

MaxThrottle —~2.89
MinThrottle —18.19
DragTableL1 —1.83
DragTableU1 -2.17
DragTableL2 -2.03
DragTableU2 -7.97
LOAD —143.8
FUEL —0.00038 tonnes
STALL 0

Design constraint:
PASS -2

Fig. 11. Best design found for the second mission (Fig. 10).

density of feasible points in the small box is 74/21946 (~ 1/300) while in the big
box it is only 74/354761 (=~ 1/4800). The big box has such a small feasible region
that the benefit of using model constraints to search for the feasible region outweighs
the model constraints overhead, while in the smaller box random probes can find the
feasible region cheaply enough that the overhead of using model constraints to find the
feasible region is not justified. However, even in the small box model constraints are still
extremely useful for searching within the feasible region in order to find an optimum.
Note that in our smaller box the feasible region forms a much higher proportion
of the volume than is the case in our larger box. This observation suggests that by
using a much smaller box, the feasible region will fill so much of box that specialized

A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62 51

230

-~ 165

engineScale = 1.146
wingArea = 3690
aspectRatio = 1.089
fuselageTaperlength = 130.1
wingThicknessRatio = 2.728
ws_div_dma = 1.235
taperRatio = 0

drawingScale = 2.04 v —- 65
Lo

Fig. 12. Aircraft designed by our system for the second mission (dimensions in feet).

treatment of modeling issues becomes unnecessary. We suspect that in practice today
optimization is often done by using human expertise and historical experience to greatly
restrict design variable ranges so that optimization will be done in such a small box that
model constraints are not needed. However, this approach is brittle in the sense that it
will not scale to allow the sort of wide-ranging exploration of the design space which
is possible with our explicit approach to modeling issues.

To test the effect of the design goal on our conclusions, we repeated our experiments
with a different goal. We used the same boxes as for the previous experiments, but
instead the goal was to design the best aircraft for the mission shown in Fig. 10. Fig. 11
shows the best design found, which differs considerably from the optimal design for the

52 A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

Strategy combination Success Start cost Opt. cost Est. 99% cost
All model constraints returned 62/74 13 36204 1238
Min/MaxThrottle “boolean” 57/74 1275 65556 2827
FUEL “boolean” 1/74 31 65105 297930
STALL “boolean” 36/74 1681 50847 4904
DragTable* “boolean” 65/74 55 40377 1194
LOAD *“boolean” 64/74 227 34899 1092
All model constraints “boolean” 0/74 6576 67046 > 336745
Two level 64/74 4307 34477 1205

Fig. 13. Performance of the various strategy combinations for the second mission.

1e+06 T T T r . . i : :
i ; All model constraints returned ~-—]
Two level -+- 1
Throttle constraints “boolean” -8--
FUEL “boolean” -]
>SOTALLbOB BaR - 205->¢-3
Drag Table constraints “boolean” -%--
LOAD “boolean” -o--
100000 | i
L&—A‘
i
1
A
v
- A
[} N
2 A
o \
PN
\
\
\.
10000 F
1000 | %
L I 1 I 1 L Soe¢ N > o
1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05

Quality

Fig. 14. Cost to achieve a range of design qualities with 99% confidence for the second mission. Quality is
takeoff mass, normalized by the best takeoff mass found (Fig. 11), so quality = 1.01 corresponds to Fig. 13.

previous mission. A diagram of this best design appears in Fig. 12. Note that as this
mission has a higher proportion of supersonic flight compared to the previous mission,
the most efficient design for the mission as a whole has smaller, narrower wings than
the best design for the previous mission. (An optimal design for a purely supersonic
mission would have tiny wings and look like a missile.) We performed the same set
of experiments for this case, and the experimental data which appears in Figs. 13, 14,
15, and 16 supports our previous conclusion that the model constraint communication
strategy can cut search cost by an order of magnitude or more.

A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62 53

Strategy combination Success Start cost Opt. cost Est. 99% cost
All model constraints returned 48/74 41 57607 3429
Min/MaxThrottle “boolean” 13/74 5616 145770 48765
FUEL “boolean” 0/74 162 93146 > 426789
STALL “boolean” 39/74 7602 64000 5951
DragTable* “boolean” 34/74 342 131652 13352
LOAD “boolean” 51/74 1420 56171 3066
All model constraints “boolean” 0/74 133265 117224 > 1145732
Two level 49/74 231396 48049 16025

Fig. 15. Performance of the various strategy combinations for the second mission in the bigger box.

1e+06 vy
[3 Al model constraints returned -—

100000

Cost

10000

[:\ CEOBEEBEEREBEEH

T T LN T T T T T T

Two level ~+--
Throttle constraints “boolean” -B--
STALL “boolean” - 1
Drag Table constraints “boolean” —&- 1
LOAD “boolean” -%--

e
G880 gnpeEoREEEE0E060006808a
Sgpaea

), 2'.
\
e
LW o . v g
B T e o O v G GGy G A et e B e |
X_. BB BB B BB -D-B A e A A& B A A AA-d A A

X,
..
*. KA XK Worge ¢

1 1 i H R 1 1 1 1

1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05
Quality

Fig. 16. Cost to achieve a range of design qualities with 99% confidence for the second mission in the
bigger box. Quality is takeoff mass, normalized by the best takeoff mass found (Fig. 11), so quality = 1.01
corresponds to Fig. 15.

To get some independent validation of the quality of our designs, we presented
our results to our domain expert, Dr. Gene Bouchard of Lockheed. Dr. Bouchard has
extensive experience in traditional aircraft design and has also conducted research on
the use of optimization in aircraft design, using both numerical optimization [2,3]
and genetic algorithms {4,5]. Dr. Bouchard reported that model constraints appeared to
provide significant improvements over optimization as used in industry today, particularly
by allowing the use of large design spaces with very small feasible regions. As mentioned

54 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

previously, model constraints provide little benefit if expertise and historical experience
are used to greatly restrict design variable ranges so that most of the design space is
feasible. However, this restricted design space approach eliminates the possibility of
finding better innovative designs in unexpected regions of the design space.

Dr. Bouchard examined the aircraft designs produced in our experiments and reported
that his informal evaluation based on his experience was that our designs compared
favorably with what he would expect from today’s industry techniques, if applied with
similar available domain knowledge and to similar mission specifications. However, a
formal comparison of the particular numerical values generated by our design system to
existing numbers from industry was not feasible. Designs seriously generated by industry
use extensive proprietary information and design knowledge which would not be made
available to academic researchers. For example, in Fig. 3 the weights computation would
depend on proprietary information about how light various aircraft components could be,
and the propulsion component would depend on very proprietary information about the
engines’ exact thrust capabilities in various flight regimes. Designing for our missions
from scratch using standard industry techniques with the nonproprietary information
available to us would have been a fairly involved project that was precluded both
by funding considerations and by the level of aircraft industry collaboration available
to us.

7. Related work

In [16] we examine the types of modeling knowledge that are needed so that a
simulator can be reliably invoked by another program and we describe algorithms for
detecting assumption violations and other problems that might lead to incorrect or
unreliable simulation results. Strategies for communicating information about modeling
failures to an automated design systems are not discussed, and the present paper is a
sequel which remedies this deficiency.

The theme of our work in this paper is that existing “legacy” simulation software
can in many cases be used in automated design with relatively minor enhancements.
The alternative is to re-engineer a simulator declaratively, using an approach such as
the compositional modeling introduced by [9] (which in turn builds on the qualitative
process theory of [10]). Continuing along this research direction [11-13] discuss the
use of qualitative simulation to check the correctness of numerical simulation resuits.
By incorporating knowledge of potential model failures into the simulator, much of
the need for communicating this information is alleviated. However, the cost of such
re-engineering may be prohibitive in the case of large legacy simulation software.

Other automated intelligent controllers for numerical simulators are described in [14,
15,30,45,48], but these do not address the issue of model and simulation quality
assurance.

Intelligent monitoring for complex systems has received considerable attention (e.g.,
[7]1), but this work has focused on diagnosis of problems in dynamically changing
physical systems as opposed to problems in the execution of computational algorithms
which are attempting to simulate the behavior of physical systems.

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 55

A great deal of work has been done in the area of numerical optimization algorithms
[20,25-27,43], though not much has been published about the particular difficulties of
attempting to optimize functions defined by large “real-world” numerical simulators. A
number of research efforts have combined Al techniques with numerical optimization
[1-3,6,8,19,21,28,32,33,37,42,44], but have not addressed the issue of model and
simulation quality assurance.

Work on the use of numerical optimization in aircraft design includes [22,40,41].
This work is to some extent able to avoid problems of model assumption violations by
using human expertise to restrict design variable ranges to values which the model will
tolerate. However, this approach is brittle in the sense that it will not scale to allow the
sort of wide-ranging exploration of the design space which is possible with our explicit
approach to modeling issues.

We have found that using model constraints results in good optimization performance
in several other design domains. These domains include the design of racing yachts
[8,31-33,37], the design of inlets for hypersonic jets [17,38,39], and the design of
inlets for supersonic missiles [46,47]. All of these domains use simulators that are
more expensive than our aircraft simulator. For example, the simulators that we use for
hypersonic inlets are computational fluid dynamics (CFD) codes that solve the two-
dimensional Navier-Stokes equations, and take between 2 and 5 hours of CPU time
for a single simulation. It would be very costly to perform extensive comparisons of
different optimization strategies using such a simulator, so in those domains we have
not performed the sorts of comparative studies we present in this article.

8. Limitations and future work

The model constraints communication strategy requires (of course) that model as-
sumptions be representable using model constraint functions, which is a possible limi-
tation since some problem domains may include assumptions which are not amenable
to such representation. However, we did not encounter such a difficulty in the concep-
tual design of aircraft domain, and the appendix of this article presents another domain
having significantly different sorts of model assumptions which are nevertheless also
representable as model constraints. (Also, in Section 7 we list a number of other design
domains in which we have successfully used model constraints.)

It appears that, for a given assumption in the aircraft domain, the design space can
be partitioned into a small number of connected regions in which the assumption holds
or does not hold. Under such conditions, even if a natural model constraint cannot be
found, an artificial one may be constructible based on geometrical closeness to the region
boundaries. However, if throughout the design space a model assumption oscillates with
high frequency between satisfaction and violation, then it will be difficult to form a
useful model constraint function. In this case the model will almost certainly need to be
revised in order to be useful for design.

CFSQP, the numerical optimizer used in this article, assumes design variables take a
continuous range of values, so our approach would not work as it stands for problems
whose design variables are fundamentally limited to a discrete set of values. However,

56 A, Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

the idea of representing model assumptions as constraints makes sense for discrete
problems as well as for continuous problems, assuming appropriate search methods are
used, such as methods from the extensive body of research on constraint satisfaction
problems.

Our experiments have been performed in a domain in which the global optimum has
a fairly large “basin of attraction”, so that a local optimization method like Sequential
Quadratic Programming will give a high confidence of finding the global optimum if
started from a small number of random starting points. For domains in which this
property fails to hold, global optimization methods such as Simulated Annealing or
Genetic Algorithms will often be preferable. Such methods would not typically be able
to make direct use of model constraint functions, so for such a domain investigating the
“model penalties” communication strategy described in Section 2 might be a worthwhile
area for future work. We have found model penalties in a Genetic Algorithm to be useful
for the design of inlets for supersonic missiles [46,47]. (See also [29].)

An interesting but very challenging area for future research would be the automated
generation of model constraint functions from a declarative representations of a model
and its assumptions.

9, Conclusion

Automated search of a space of candidate designs is an attractive way to improve
the traditional engineering design process. To make this approach work, however, the
automated design system must include both knowledge of the modeling limitations of
the method used to evaluate candidate designs and also an effective way to use this
knowledge to influence the search process. We suggest that a productive approach is
to include this knowledge by implementing a set of model constraint functions which
measure how much each modeling assumption is violated. The search is then guided by
using the values of these model constraint functions as constraint inputs to a standard
constrained nonlinear optimization numerical method. A key result of our work is a
successful demonstration of the application of Al techniques to an important engineering
problem. In an empirical study of parametric conceptual aircraft design, we observed
a cost improvement of two orders of magnitude. We also present evidence that such
improvements may transfer to other domains. The principal contribution of our work is
a new design optimization methodology which makes explicit the interaction between
models of artifacts, and validity models of artifact models.

Acknowledgments

The research in this article depended critically on our collaboration with Gene
Bouchard of Lockheed and Ron Luffy and Steve Scavo of General Electric Aircraft
Engines. Our work benefited greatly from conversations with Saul Amarel, Tom Ell-
man, Haym Hirsh, Keith Miyake, Khaled Rasheed, Gerard Richter, Elisha Sacks, and
Lou Steinberg. This research was partially supported by NASA under grant NAG2-817

A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62 57

and was also part of the Rutgers-based HPCD (Hypercomputing and Design) project
supported by the Advanced Research Projects Agency of the Department of Defense
through contract ARPA-DABT 63-93-C-0064.

Appendix A. Model constraints for a different design problem

We have also implemented model constraints for a different design problem having
significantly different sorts of model assumptions. Here we look at the problem of
designing a particular subcomponent of an aircraft: the engine’s exhaust nozzle. In a
supersonic aircraft, exhaust nozzles are complex, adjustable mechanical systems, and
a computational simulation requires a number of model assumptions which have a
geometrical flavor not found in the work we described above.

Fig. A.1 shows the class of nozzles we considered, the axisymmetric scheduled
convergent-divergent exhaust nozzles often found in supersonic aircraft [24]. In Fig. A.1,
r0, *e, and ry are fixed radii, and rg and r9 are radii which are mechanically varied
during aircraft operation. g is the outer radius of the engine to which the nozzle is
attached, r, is the radius of the duct leaving the engine, r; is the radius of the duct
at the beginning of the movable convergent section of the nozzle, rg is the (variable)
radius of the nozzle throat, and rg is the (variable) nozzle exit radius. Mechanically,
this nozzle is a four-bar linkage, with three movable links labeled in Fig. A.1 by their
lengths I, Iy, and l,. During aircraft operation, the linkage is moved to change rg
so that the cross-sectional area at the nozzle throat will produce desired engine per-
formance. Since a four-bar linkage has one degree of freedom, setting rg also sets
rg [18]

We approach the exhaust nozzle design problem as follows:

(1) Design an aircraft for a particular mission as described in the main body of this

article. A high level of abstraction is used, and the exhaust nozzle is not modeled

explicitly.
Oc
L I T —
| =
. N | T ! external
engine } T - . 94— . atmosphere
! re i r | Ic) - ___/N ______ 5 ‘
7,
i L 1"8
. o J — Y
O

Fig. A.l. Axisymmetric convergent-divergent exhaust nozzle (flow from left to right).

58 A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

(2) Fix (almost) all of the major aircraft parameters at the optimal values found
in the abstract optimization, add an explicit model of the exhaust nozzle to the
simulation, and vary the parameters describing the nozzle geometry (Fig. A.1),
using the same optimization criterion as in the main body of the article (i.e.,
minimize takeoff mass of the aircraft required to complete a given mission).

The explicit model of the exhaust nozzle used in the second stage is based on one-
dimensional gas dynamics heavily supplemented by experimental data tables. The fol-
lowing additional model constraint functions are used (which, as before, are < 0 if a
constraint is satisfied and positive otherwise):

ELMAX = (length /, of external nozzle flap) — (maximum length external nozzle flap
could have, with the given values for the rest of the nozzle geometry, while still
allowing the nozzle to be connected as a convergent-divergent nozzle).

ELMIN = (minimum length external nozzle flap could have, with the given values for
the rest of the nozzle geometry, while still allowing the nozzle to be connected as a
convergent-divergent nozzle) — (length [, of external nozzle flap).

CA = (minimum angle to which convergent flap can move, while still maintaining a
convergent-divergent configuration) — (maximum angle to which convergent flap can
move, while still maintaining a convergent-divergent configuration).

R8LOW = (smallest value rg can achieve with current geometry) — (smallest value for
rg required during mission simulation).

R8HIGH = (largest value for rg required during mission simulation) — (largest value rg
can achieve with current geometry while maintaining a convergent-divergent config-
uration).

NGI1 = 0 — z7. Nozzle geometry bound.

NG2 = rg — rio. Nozzle geometry bound.

NG3 = r7 — r19. Nozzle geometry bound.

NG4 = 730 — (27 + I. + 13). Nozzle geometry bound.

NGS5 = (r7 — I.) — re. Nozzle geometry bound.

CAILB, CA1UB, CA2LB, CA2UB: violation of bounds for a two-dimensional table of
experimental data on nozzle angularity thrust loss.

CVILB, CV1UB, CV2LB, CV2UB: violation of bounds for a two-dimensional table of
experimental data on nozzle friction velocity/thrust loss.

CBILB, CB1UB, CB2LB, CB2UB: violation of bounds for a two-dimensional table of
experimental data on nozzle boattail (external) drag.

The model constraints defined in the main body of the article also continue to be
used.

We experimentally compared the model constraints and boolean communication strate-
gies for this new design problem, to see if the model constraints strategy again proved
superior, as it did in the main body of this article. For our experiments, we focused on
stage two of the two-stage design process described above, since stage one does not in-
volve the explicit nozzle model. (Note that stage one is just the design process described
extensively in the main body of the article.) In stage two we used a five-dimensional
design space consisting of the four nozzle geometry parameters I, I, ., and r;, and

A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62 59

Strategy combination Success Start cost Opt. cost Est. 99% cost
All model constraints returned 5/100 21504 54297 68055
All model constraints “boolean” 3/100 2674928 39106 4103386

Fig. A.2. Performance of the various strategy combinations for the nozzle design problem.

1e+08 T T T T

All model constraints “boolean” —o—
All model constraints retumed -+~

1e+07 [

1e+06 |

Cost

100000 |

e

10000 1 L 1 1
1 1.01 1.02 1.03 1.04 1.05
Quality

Fig. A.3. Cost to achieve a range of design qualities with 99% confidence for the nozzle design problem.
Quality is takeoff mass, normalized by the best takeoff mass found.

also the aircraft wing area. Wing area was added to give some “looseness” to the main
aircraft design, to avoid difficulties in finding a nozzle that will fit the exact optimal
design found in stage one.

The mission of Fig. 2 was used again for these experiments. For the nozzle prob-
lem, we did not do extensive experiments testing each individual model constraint
for its effect, but instead simply compared a multistart optimization in which all
model constraints are available to CFSQP to an optimization in which all model con-
straints are handled with the “boolean” strategy. Figs. A.2 and A.3 show the exper-
imental results, indicating that using model constraints reduces search cost by orders
of magnitude, as we found in the main body of the article. Note that the density
of feasible points in this space is only 100/2674928 (= 1/27000), and that model
constraints locate this small feasible region much more efficiently than do random
probes.

60 A. Gelsey et al./Artificial Intelligence 101 (1998) 35-62

As an additional experiment, after the second stage of the two-stage design process,
we added a third stage in which a single optimization with all twelve design variables
was started from the best point found in stage two. This third stage improved the design
somewhat, but the improvement was rather small since the stage one and stage two
design problems are fairly decomposable [34,36].

References

[1]1 A.M. Agogino, A.S. Almgren, Techniques for integrating qualitative reasoning and symbolic computing,
Engineering Optimization 12 (1987) 117-135.

[2] E.E. Bouchard, Concepts for a future aircraft design environment, in: 1992 Aerospace Design Conference,
Irvine, CA, 1992, AIAA-92-1188.

[3]1 E.E. Bouchard, G.H. Kidwell, J.E. Rogan, The application of artificial intelligence technology to
aeronautical system design, in: AIAA/AHS/ASEE Aircraft Design Systems and Operations Meeting,
Atlanta, GA, 1988, AIAA-88-4426.

[4] M.F. Bramlette, E.E. Bouchard, Genetic algorithms in the parametric design of aircraft, in: L. Davis
(Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.

{51 M.F. Bramlette, E.E. Bouchard, E.Buckman, L.A. Takacs, Current applications of genetic algorithms to
aeronautical system, in: 6th Annual Aerospace Applications of Artificial Intelligence, 1990.

[6] G. Cerbone, Machine learning in engineering: techniques to speed up numerical optimization, Ph.D.
Thesis, Technical Report 92-30-09, Department of Computer Science, Oregon State University, Corvallis,
OR, 1992.

[7] D. Dvorak, B. Kuipers, Process monitoring and diagnosis, IEEE Expert 6 (3) (1991) 67-74.

[8] T. Ellman, J. Keane, M. Schwabacher, Intelligent model selection for hillclimbing search in computer-
aided design, in: Proceedings 1lth National Conference on Artificial Intelligence (AAAI-93),
Washington, DC, MIT Press, Cambridge, MA, 1993, pp. 594-599.

[91 B. Falkenhainer, K.D. Forbus, Compositional modeling: finding the right model for the job, Artificial
Intelligence 51 (1991) 95-143.

[10] K.D. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85-168.

{11} K.D. Forbus, B. Falkenhainer, Self-explanatory simulations: an integration of qualitative and quantitative
knowledge, in: Proceedings 8th National Conference on Artificial Intelligence (AAAI-90), Boston, MA,
1990, pp. 380-387.

[12] K.D. Forbus, B. Falkenhainer, Self-explanatory simulations: Scaling up to large models, in: Proceedings
10th National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, 1992.

[13] K.D. Forbus, B. Falkenhainer, Scaling up self-explanatory simulations: polynomial-time compilation, in:
Proceedings 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Quebec,
MIT Press, Cambridge, MA, 1995, pp. 1798-1805.

[14] A. Gelsey, Using intelligently controlled simulation to predict a machine’s long-term behavior, in:
Proceedings 9th National Conference on Artificial Intelligence (AAAI-92), Anaheim, CA, MIT Press,
Cambridge, MA, 1991, pp. 880-887.

[15] A. Gelsey, Automated reasoning about machines, Artificial Intelligence 74 (1) (1995) 1-53.

[16} A. Gelsey, Intelligent automated quality control for computational simulation, Artif. Intell. for
Engineering Design, Analysis and Manufacturing 9 (5) (1995) 387-400.

{17] A. Gelsey, D.D. Knight, S. Gao, M. Schwabacher, NPARC simulation and redesign of the NASA P2
hypersonic inlet, in: 31st Joint Propulsion Conference, San Diego, CA, 1995, AIAA-95-2760.

[18] A. Gelsey, D. Smith, Computational environment for exhaust nozzle design, J. Aircraft 33 (3) (1996)
470-476.

[19] A. Gelsey, D. Smith, M. Schwabacher, K. Rasheed, K. Miyake, A search space toolkit: SST, Decision
Support Systems 18 (1996) 341-356.

[20] PE. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, New York, 1981.

[21] D. Hoeltzel, W. Chieng, Statistical machine learning for the cognitive selection of nonlinear programming
algorithms in engineering design optimization, in: Advances in Design Automation, Boston, MA, 1987.

A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62 61

[22] I. Kroo, S. Altus, R. Braun, P. Gage, I. Sobieski, Multidisciplinary optimization methods for aircraft
preliminary design, in: 5Sth ATAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Panama City, FL, 1994, AIAA-94-4325.

{23] C. Lawrence, J. Zhou, A. Tits, User’s guide for CFSQP version 2.3: a C code for solving (large scale)
constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality
constraints, Technical Report TR-94-16rl, Institute for Systems Research, University of Maryland,
College Park, MD, 1995.

[24] J.D. Mattingly, W.H. Heiser, D.H. Daley, Aircraft Engine Design, AIAA Education Series, American
Institute of Aeronautics and Astronautics, New York, 1987.

[25] J.J. Moré, S.J. Wright, Optimization Software Guide, SIAM, Philadelphia, PA, 1993.

[26] P. Papalambros, J. Wilde, Principles of Optimal Design, Cambridge University Press, New York, 1988.

[27] A.L. Peressini, FE. Sullivan, J.J. Uhl Jr, The Mathematics of Nonlinear Programming, Springer, New
York, 1988.

{28] D. Powell, Inter-GEN: a hybrid approach to engineering design optimization, Ph.D. Thesis, Department
of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 1990.

[29] K. Rasheed, H. Hirsh, A. Gelsey, A genetic algorithm for continuous design space search, Artif. Intell.
Engineering 11 (3) (1997) 295-305.

[30] E.P. Sacks, Automatic analysis of one-parameter ordinary differential equations by intelligent numeric
simulation, Artificial Intelligence 48 (1) (1991) 27-56.

[31] M. Schwabacher, The use of artificial intelligence to improve the numerical optimization of complex
engineering designs, Ph.D. Thesis, Technical Report HPCD-TR-45, Department of Computer Science,
Rutgers University, New Brunswick, NJ, 1996, http://www.cs.rutgers.edu/~schwabac/thesis.html.

[32] M. Schwabacher, T. Ellman, H. Hirsh, Learning to set up numerical optimizations of engineering designs,
Artif. Intell. for Engineering Design, Analysis, and Manufacturing 12 (2) (1998) (to appear).

[33] M. Schwabacher, T. Ellman, H. Hirsh, G. Richter, Learning to choose a reformulation for numerical
optimization of engineering designs, in: J. Gero, F. Sudweeks (Eds.), Artificial Intelligence in Design
'96, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, pp. 447-462.

[34] M. Schwabacher, A. Gelsey, Multi-level simulation and numerical optimization of complex engineering
designs, in: 6th AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Symposium, Bellevue,
WA, 1996, AIAA-96-4021.

{35] M. Schwabacher, A. Gelsey, Intelligent gradient-based search of incompletely defined design spaces,
Artif. Intell. for Engineering Design, Analysis and Manufacturing 11 (3) (1997) 199-210.

[36] M. Schwabacher, A. Gelsey, Multi-level simulation and numerical optimization of complex engineering
designs, J. Aircraft 35 (2) (1998) (to appear).

[371 M. Schwabacher, H. Hirsh, T. Ellman, Learning prototype-selection rules for case-based iterative design,
in: Proceedings 10th IEEE Conference on Artificial Intelligence for Applications, San Antonio, TX,
1994, pp. 56-62.

[38] V. Shukla, A. Gelsey, M. Schwabacher, D. Smith, D.D. Knight, Automated redesign of the NASA P8
hypersonic inlet using numerical optimization, in: AIAA Joint Propulsion Conference, 1996.

[39] V. Shukla, A. Gelsey, M. Schwabacher, D. Smith, D.D. Knight, Automated design optimization for the
P2 and P8 hypersonic inlets, AIAA J. Aircraft 34 (2) (1997) 228-235.

[40] J. Sobieszczanski-Sobieski, R.T. Haftka, Multidisciplinary aerospace design optimization: Survey of
recent developments, in: 34th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1996, ATAA-
96-0711.

{41] J. Sobieszczanski-Sobieski, B.B. James, A.R. Dovi, Structural optimization by multilevel decomposition,
AIAA J. 23 (11) (1985) 1775-1782.

[42] S.S. Tong, D. Powell, S. Goel, Integration of artificial intelligence and numerical optimization techniques
for the design of complex aerospace systems, in: 1992 Aerospace Design Conference, Irvine, CA, 1992,
AlAA-92-1189.

[43] G.N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: With Applications,
McGraw-Hill, New York, 1984.

[44] B.C. Williams, J. Cagan, Activity analysis: the qualitative analysis of stationary points for optimal
reasoning, in: Proceedings 12th National Conference on Artificial Intelligence (AAAI-94), Seattle, WA,
1994, pp. 1217-1223.

62 A. Gelsey et al. /Artificial Intelligence 101 (1998) 35-62

[45] K.M.-K. Yip, Understanding complex dynamics by visual and symbolic reasoning, Artificial Intelligence
51 (1-3) (1991) 179-221

[46] G.-C. Zha, D. Smith, M. Schwabacher, K. Rasheed, A. Gelsey, D. Knight, M. Haas, High
performance supersonic missile inlet design using automated optimization, in: 6th AIAA/NASA/USAF
Multidisciplinary Analysis & Optimization Symposium, Bellevue, WA, 1996, AIAA-96-4142.

[47] G.-C. Zha, D. Smith, M. Schwabacher, K. Rasheed, A. Gelsey, D. Knight, M. Haas, High performance
supersonic missile inlet design using automated optimization, AIAA J. Aircraft 34 (6) (1997) 697-705.

{48] E Zhao, Extracting and representing qualitative behaviors of complex systems in phase space, Artificial
Intelligence 69 (1-2) (1994) 51-92.

